Quantitative charge-tags for sterol and oxysterol analysis.

نویسندگان

  • Peter J Crick
  • T William Bentley
  • Jonas Abdel-Khalik
  • Ian Matthews
  • Peter T Clayton
  • Andrew A Morris
  • Brian W Bigger
  • Chiara Zerbinati
  • Luigi Tritapepe
  • Luigi Iuliano
  • Yuqin Wang
  • William J Griffiths
چکیده

BACKGROUND Global sterol analysis is challenging owing to the extreme diversity of sterol natural products, the tendency of cholesterol to dominate in abundance over all other sterols, and the structural lack of a strong chromophore or readily ionized functional group. We developed a method to overcome these challenges by using different isotope-labeled versions of the Girard P reagent (GP) as quantitative charge-tags for the LC-MS analysis of sterols including oxysterols. METHODS Sterols/oxysterols in plasma were extracted in ethanol containing deuterated internal standards, separated by C18 solid-phase extraction, and derivatized with GP, with or without prior oxidation of 3β-hydroxy to 3-oxo groups. RESULTS By use of different isotope-labeled GPs, it was possible to analyze in a single LC-MS analysis both sterols/oxysterols that naturally possess a 3-oxo group and those with a 3β-hydroxy group. Intra- and interassay CVs were <15%, and recoveries for representative oxysterols and cholestenoic acids were 85%-108%. By adopting a multiplex approach to isotope labeling, we analyzed up to 4 different samples in a single run. Using plasma samples, we could demonstrate the diagnosis of inborn errors of metabolism and also the export of oxysterols from brain via the jugular vein. CONCLUSIONS This method allows the profiling of the widest range of sterols/oxysterols in a single analytical run and can be used to identify inborn errors of cholesterol synthesis and metabolism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Membrane and protein interactions of oxysterols.

PURPOSE OF REVIEW Oxysterols, oxidation products of cholesterol, mediate numerous and diverse biological processes. The objective of this review is to explain some of the biochemical and cell biological properties of oxysterols based on their membrane biophysical properties and their interaction with integral and peripheral membrane proteins. RECENT FINDINGS According to their biophysical pro...

متن کامل

Oxysterol Binding Protein-dependent Activation of Sphingomyelin Synthesis in the Golgi Apparatus Requires Phosphatidylinositol 4-Kinase IIα

Cholesterol and sphingomyelin (SM) associate in raft domains and are metabolically coregulated. One aspect of coordinate regulation occurs in the Golgi apparatus where oxysterol binding protein (OSBP) mediates sterol-dependent activation of ceramide transport protein (CERT) activity and SM synthesis. Because CERT transfer activity is dependent on its phosphatidylinositol 4 phosphate [PtdIns(4)P...

متن کامل

Overlapping functions of the yeast oxysterol-binding protein homologues.

The Saccharomyces cerevisiae genome encodes seven homologues of the mammalian oxysterol-binding protein (OSBP), a protein implicated in lipid trafficking and sterol homeostasis. To determine the functions of the yeast OSBP gene family (OSH1-OSH7), we used a combination of genetics, genomics, and sterol lipid analysis to characterize OSH deletion mutants. All 127 combinations and permutations of...

متن کامل

AAA ATPases regulate membrane association of yeast oxysterol binding proteins and sterol metabolism.

The yeast genome encodes seven oxysterol binding protein homologs, Osh1p-Osh7p, which have been implicated in regulating intracellular lipid and vesicular transport. Here, we show that both Osh6p and Osh7p interact with Vps4p, a member of the AAA (ATPases associated with a variety of cellular activities) family. The coiled-coil domain of Osh7p was found to interact with Vps4p in a yeast two-hyb...

متن کامل

Side chain oxygenated cholesterol regulates cellular cholesterol homeostasis through direct sterol-membrane interactions.

Side chain oxysterols exert cholesterol homeostatic effects by suppression of sterol regulatory element-binding protein maturation and promoting degradation of hydroxymethylglutaryl-CoA reductase. To examine whether oxysterol-membrane interactions contribute to the regulation of cellular cholesterol homeostasis, we synthesized the enantiomer of 25-hydroxycholesterol. Using this unique oxysterol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical chemistry

دوره 61 2  شماره 

صفحات  -

تاریخ انتشار 2015